# Cost Benefit Analysis of Hybrid (Wind/Solar) Power Generation System Using HOMER for Devabag, Karwar

Vishwanath M Hegde, Dr. H. N. Nagaraja

Abstract: This paper is based on cost analysis of Hybrid System by using HOMER software. The global warming and demand by global agencies to induce the development of Renewable Energy like Solar and Wind energy induced this paper. It presents cost analysis of solar and wind hybrid energy system and optimization result of all the components by HOMER Software which simulates the result and show cost analysis, cash flow, economies of system etc, by taking Load at small village Devabag, at Karwar. Environment friendly hybrid system can yield optimal benefit to localities' of Devabag Village of Karwar. Effort is made to design hybrid energy system with solar panels, wind turbine, generator, and battery. Here HOMER examines least cost analysis of configuration of hybrid energy.

Index terms HOMER, PV, Wind, Generator, Cost Analysis, Economies

#### **1 INTRODUCTION**

Energy system stimulates growth of social & economic development in region for households. Some Energy based on coal etc. is related to environmental pollution and degradation. Grid energy since not reached to villages or poor energy supply to villages etc. urgently requires switching from grid supply to standalone renewable energy. HOMER (Hybrid Optimization Model for Electric Renewable) simulation model developed to design a reliable and environment friendly standalone hybrid system. That assesses Techno-economic analysis with feasible component sizing. It assists to access the effect of uncertainties or changes in the input. HOMER is computer model developed by U. S. NREL (National Renewable Energy Laboratory) which assists comparison of energy generation technologies with wide range of application.

In this paper the simulation result of different combinations of hybrid energy components without grid is analyzed to reach out most cost effective system.

# 2 ENERGY RESOURCE FOR HYBRID POWER AND LOCATION OVERWIEW

The analysis is done at study location of Devabag Village, Karwar (Latitude 14.8185° N, Longitude 74.1416° E) and study show excellent result with abundant solar penetration and wind speed resources.



Fig 1 Solar GHI Resources

Fig.1 showing Solar GHI Resource on the basis of NASA Surface Data and solar energy database of project site.



Fig 2 Wind GHI Resources

Fig.2 Showing Wind GHI Resource on the basis of NASA Surface Data and solar energy database of project site.

# **3 MODELLING IN HOMER**

Based on feasibility of available Solar and Wind data, modeling is done using HOMER PRO Software.

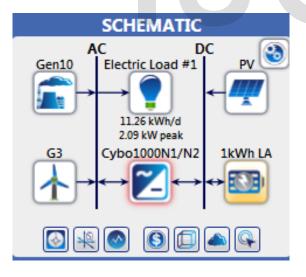



Fig 3 Schematic Design of Hybrid Energy System

Fig 3 shows modeling which comprises PV Panels, Wind Turbine, Generator, Converter and Battery. Load is also considered of study locality.

| First                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  |                                            |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----|
| SOLEMATIC<br>SOLEMATIC<br>SOLEMATIC<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJECT<br>SUBJEC | Lensing Profile         23           0         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000 <td< th=""><th></th><th>SIGN<br/>Encours<br/>Second Paths</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | SIGN<br>Encours<br>Second Paths            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant | Matric         Baseline         Scaled           Anexoget SMV/May         11.24         11.25           Anexoget(W)         4.7         4.7           Park (SM)         2.09         2.00           Load frame         22         22           Load frame         24         6.0 | the 24 24 24 24 24 24 24 24 24 24 24 24 24 | ala |

Fig 4 Electric Load

Fig. 4 show load of domestic equipments in site area of Devabag, Karwar. Typical house makes use of Tube light, Switch, fan and TV.

Table 1 Accumulated hourly data given below

| Hour             | Daily<br>Ioad<br>(kW) | Hour   | Daily<br>load<br>(kW) |
|------------------|-----------------------|--------|-----------------------|
| 0                | 0.109                 | 12     | 0.691                 |
| 1                | 0.095                 | 13     | 0.519                 |
| 2                | 0.095                 | 14     | 0.418                 |
| 3                | 0.095                 | 15     | 0.397                 |
| 4                | 0.327                 | 16     | 0.409                 |
| 5                | 0.5                   | 17     | 0.658                 |
| 6                | 0.55                  | 18     | 1.231                 |
| 7                | 0.5                   | 19     | 1.003                 |
| 8                | 0.42                  | 20     | 0.676                 |
| 9                | 0.43                  | 21     | 0.48                  |
| 10               | 0.495                 | 22     | 0.3                   |
| 11               | 0.533                 | 23     | 0.204                 |
| Total Da<br>(kW) | ily Load              | 11.135 |                       |

Scaled Annual Average of load (kW/h) is 11.26. The same is shown in the following graph



Fig 5 Scaled Data Monthly Average Load

Fig 5 show Average scaled data load month wise in households of Devabag, Karwar

### **4 INPUT VALUE OF PV**

In the project site, Generic Flat PV Panel of 1 kw capacity used, Totally 5 panels used in series to get capacity of 5 kW. The Capital cost of PV Panels estimated Rs.240000 and replacement cost Rs.230000/- and Operation and maintenance cost is considered Rs.2000/yr. The life time of PV panel is estimated 25 years. Screen shot of Input PV details is shown in Fig. 6

| SENERATOR 💼                                                                                                          | Name: Ge     | neric 10kW Fixed | Сара |                                                                                                   |        |                      | Copy To I             |
|----------------------------------------------------------------------------------------------------------------------|--------------|------------------|------|---------------------------------------------------------------------------------------------------|--------|----------------------|-----------------------|
| Properties<br>Name: Generic 10kW Fixed Ca                                                                            | pacity Gense | •                | ń    | Optimization Optimization Simulate systems with and without this generator Include in all systems |        |                      | Electrical E     AC ( |
| Capacity: 10 kW<br>Fuel: Diesel                                                                                      |              |                  | 2    | Generic                                                                                           | HOMER  | Generator Cost       |                       |
| Fuel curve intercept: 0.480 L //                                                                                     |              |                  |      | homerenergy.com                                                                                   | Energy | Initial Capital (९): | 200,000.00            |
| Fuel curve slope: 0.286 L /hr/k<br>Emissions                                                                         | w            |                  |      |                                                                                                   |        | Replacement (R):     | 200,000.00            |
| CO (g/L fuel): 19.76<br>Unburned HC (g/L fuel): 0.72<br>Particulates (g/L fuel): 1.198<br>Fuel Sulfur to PM (%): 2.2 |              |                  |      |                                                                                                   |        | O&M (₹/op. hour):    | 50,000.000            |
| Site Specific Fuel Maintenar                                                                                         | ce Schedu    | le               |      |                                                                                                   |        |                      |                       |
| Minimum Load Ratio (%):                                                                                              | 25.00        |                  |      |                                                                                                   |        |                      |                       |
| Heat Recovery Ratio (%):                                                                                             | 0.00         |                  |      |                                                                                                   |        |                      |                       |
| Lifetime (Hours):                                                                                                    | 15,000.00    |                  |      |                                                                                                   |        |                      |                       |
| Minimum Runtime (Minutes):                                                                                           | 0.00         |                  |      |                                                                                                   |        |                      |                       |

Fig 6 Input data of PV

# **5. INPUT VALUE OF WIND TURBINE**

Generic 3 kW Wind Turbine installed with Capital Cost of Rs.330000/-, Replacement Cost of Rs.330000/- and Maintenance cost of Rs.2000/yr. Life time of wind turbine considered 20 years. Hub height is 17 m to yield better result in coastal belt of Devabag, Karwar

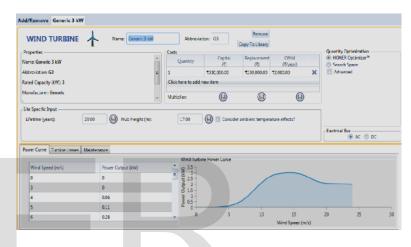



Fig 7 Input Data of Wind Turbine & power curve

Fig.7 Show Input value of wind turbine of 3 kW capacity. Wind turbine power curve is also shown based on following data month wise on average base.

Table 2 Monthly wind speed

| Month | Average Speed<br>(m/s) |
|-------|------------------------|
| Jan   | 3.59                   |
| Feb   | 3.68                   |
| Mar   | 3.49                   |
| Apr   | 3.56                   |
| May   | 4.22                   |
| Jun   | 5.21                   |
| Jul   | 4.69                   |
| Aug   | 4.3                    |
| Sep   | 4.4                    |
| Oct   | 4.56                   |
| Nov   | 4.57                   |
| Dec   | 4.09                   |
|       |                        |

# 6. INPUT VALUE OF GENERATOR

Generic 10 kW Generator is considered to reach emergency peak load. Capital Cost is Rs.220000 and replacement cost is Rs.220000 and O&M cost Rs.50000/yr towards fuel.

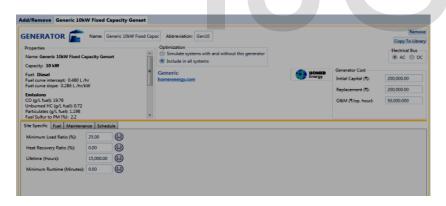



Fig 8 Input Value of Generic 10 kW Generator

As in Fig 8 included Generator in Simulation even though Optimization & simulation may be considered with or without Generator

### 7. INPUT VALUE OF CONVERTOR

Convertor with capacity of 4 kW is used and its capital cost is Rs.80000/-, Replacement Cost is Rs.75000/- and O & M Cost is Rs.2000/ yr. Convertor converts DC into AC for households of Devabag, Karwar and supports Standalone Renewable Energy supply in uninterrupted condition. Life time is 25 years and Convertor efficiency is 96 % and Rectifier efficiency is 100 % as shown in HOMER package.

|                                                                                                                   | CyboEnergy Off-Grid Twin-pack | C1-Mini-1200N1 N2                                   | Name:                                  | CyboEnerg                        | y Off-Grid Twin               |   |                                                       | Remove          |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------|----------------------------------------|----------------------------------|-------------------------------|---|-------------------------------------------------------|-----------------|
| CONVERTER®                                                                                                        | Complete Cr                   | italog                                              | Abbreviation:                          | Cybo10                           |                               |   |                                                       | Copy To Librar  |
| Properties                                                                                                        |                               | Costs<br>Capacity (kW)<br>4<br>Click here to add ne | Capital<br>(९)<br>९६0,000.00<br>writem | Replacement<br>(*)<br>*75,000.00 | 08/M<br>(T/year)<br>T2,000.00 | × | Capacity Optimizati<br>HOMER Optimize<br>Search Space | 1 <sup>34</sup> |
| Mini-inverter twin-pack, connected in<br>Mini-1000N1) and a (C1-Mini-10002)<br>Can produce up to 2300W, 120V, 60H | 2). "Off-Grid Twin Pack"      | Multiplier:                                         |                                        |                                  |                               |   |                                                       |                 |
| CyboEnergy                                                                                                        | E                             | Lifetime (years):<br>Efficiency (%):                | 20.00 (ij)<br>96.00 (ij)<br>generator? |                                  | Capacity (%): 0.00            | _ |                                                       |                 |
|                                                                                                                   | Fig 9                         | Input Val                                           | ues for Co                             | onverte                          | or                            |   |                                                       |                 |

Fig 9 Shows Specifications of converter used to convert DC to AC

## 8. INPUT VALUE OF STORAGE

Generic 1 kW x 10 Acid Batteries used in series to store energy produced in this Hybrid Energy System of solar and wind energy. Capital cost is Rs.80000/-, Replacement Cost Rs.80000/- and maintenance cost is Rs.1000/- per year. Life time is 10 years and throughput is 800.00 kWh. Nominal Voltage 12 V, Maximum Capacity 83.4 Ah. Maximum Charge Current 16.7 A and Maximum Discharge Current 24.3 A are specifications of batteries.

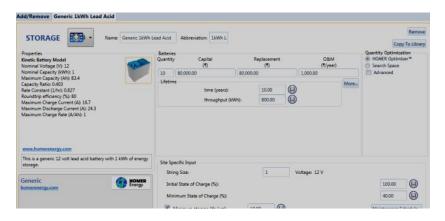
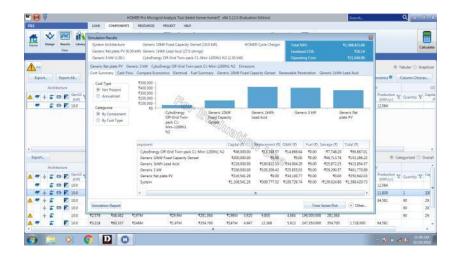



Fig 10 Input Value of Storage Battery


### 9. OPTIMIZATION RESULT

Sensitivity and optimization result obtained using HOMER PRO software designed by NASA NREL. It optimizes for lowest net present cost of project.

|         | Ŵ                 |                  |                                               | LDAD Convertient G                                                  | COMPONENTS                                   | * 🚥 🖻                                                                 | OLISCT HELP                                                                                   | er Hydro Reform                                                                            | er Electrityt                                                                                  | ar Hydroge<br>Tare             | e Hydrakovete                                |                                      | ernal Laad<br>ontoolier                                  |                       |                                             |                                                 |                               | CHOR                   |
|---------|-------------------|------------------|-----------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------------------|-----------------------|---------------------------------------------|-------------------------------------------------|-------------------------------|------------------------|
| _       | _                 |                  |                                               |                                                                     |                                              |                                                                       |                                                                                               | R                                                                                          | ESULTS                                                                                         |                                |                                              |                                      |                                                          |                       |                                             |                                                 |                               | _                      |
| **      |                   |                  |                                               |                                                                     |                                              |                                                                       |                                                                                               |                                                                                            |                                                                                                |                                |                                              |                                      |                                                          |                       |                                             |                                                 | Tabular 🖯 C                   | Sraph                  |
| Export  | -                 | Expe             | rt AlL.                                       |                                                                     |                                              |                                                                       | Left Click on a s                                                                             | Sensitivity Car<br>emolitivity care to see it                                              |                                                                                                | ion Results.                   |                                              |                                      |                                                          |                       | Compare Eco                                 | onomica 🔍                                       | Column Cho                    | ices                   |
|         | Arch              | hitecture        |                                               |                                                                     |                                              | Con                                                                   | ıt                                                                                            |                                                                                            |                                                                                                |                                |                                              | Gen1                                 | )                                                        |                       | P                                           | v                                               |                               |                        |
| -       |                   | -                | Gen10                                         | NPC O V                                                             | COE 0 7                                      | Operating cost                                                        | Initial capital 😵                                                                             | Fuel cost 0 V                                                                              | 08M<br>(0/yi)                                                                                  | Hours 😵                        | Production V                                 | Tuel V                               | CBM Cost V                                               | Fuel Cost V<br>(R/yr) | Capital Cost                                | Production (kWh/yr)                             | Quantity 1                    | 2                      |
| -       | 5                 | - P              | 10.0                                          | ₹1.04M                                                              | 119.59                                       | #17.872                                                               | \$809.329                                                                                     | 10.00                                                                                      | 16.844                                                                                         | 0                              | 0                                            | 0                                    | 0                                                        | 0                     | 323.329                                     | 12.084                                          |                               |                        |
|         |                   |                  |                                               |                                                                     |                                              |                                                                       | 13 <sub>0</sub> p                                                                             | EVER                                                                                       | una.                                                                                           |                                |                                              |                                      |                                                          |                       |                                             |                                                 |                               |                        |
| Export. |                   |                  |                                               |                                                                     |                                              |                                                                       |                                                                                               | Optimization                                                                               | Results                                                                                        | lon                            | e lanere                                     |                                      |                                                          |                       |                                             | . 0                                             | ntegorized 🔘                  | Ove                    |
|         | Ard               | hitecture        |                                               |                                                                     |                                              | Con                                                                   | Left Double Click on                                                                          |                                                                                            | Results                                                                                        | lon                            | p. hansen.                                   | Gentil                               |                                                          |                       | P                                           |                                                 | elegorized ()                 | Ove                    |
|         | Ard               | hitecture<br>D E |                                               | NPC • Y                                                             | COE • V                                      | Con                                                                   | Left Double Click or                                                                          | Optimization                                                                               | Results.                                                                                       | -0                             | Un                                           |                                      |                                                          | Fuel Cost V           | P<br>Capital Cost<br>(1)                    | v                                               |                               |                        |
|         | Ard               | hitecture<br>D E | Gen10<br>(kW)                                 | NPC • Y                                                             | COE • ¥                                      | Cor<br>Operating cost <b>a 1</b>                                      | Left Double Click or<br>It<br>Initial capital w                                               | Optimization<br>a particular system to<br>Fuel cost                                        |                                                                                                | -0                             | Under the second                             | fuel v                               | O&M Cost v                                               | Fuel Cost V<br>(Cyr)  | Capital Cost v                              | V<br>Production                                 |                               |                        |
|         | Ard               | •                | Gen10<br>(kW)                                 | (9)                                                                 | (0)                                          | Cos<br>Operating cost<br>(উ/yr)                                       | Left Double Click or<br>It<br>Initial capital ¥                                               | Optimization<br>a particular system to<br>Fuel cost                                        |                                                                                                | Hours V                        | Production                                   | fuel V                               | OBM Cost V<br>(t/yr)                                     | 1600                  | Capital Cost V                              | Production (kWh/yr)                             |                               |                        |
|         | Ard               | •                | Gen10<br>(kW)<br>10.0                         | (0)<br>@1.04M                                                       | R19.59                                       | Con<br>Operating cost • ¥<br>(V)()<br>¥17,872                         | Left Double Click or<br>I<br>Initial capital V<br>(5)<br>RB09,329                             | Optimization<br>a particular system to<br>Puell cost<br>(V/yr)<br>10.00                    | Ca.M V<br>(C/yr)<br>00,866                                                                     | Hours V                        | Production of                                | fuel ¥<br>(i.)                       | 08M Cost ¥<br>(t/yr)<br>0                                | 0                     | Capital Cost V<br>(7)<br>323,329            | V<br>Production<br>(kWh/yr)<br>12,084           | C Quantity 1                  | 33                     |
|         |                   |                  | Gen10<br>(kW)<br>10.0<br>10.0                 | (1)<br>104M<br>139M                                                 | 10<br>129.59<br>126.14                       | Cos<br>Operating cost • • •<br>(*/yr)<br>*27,872<br>*21,650           | Left Double Click or<br>It<br>Initial capital V<br>(10)<br>1009, 329<br>11.11M                | Optimization<br>a particular system to<br>(t/yr)<br>10.00<br>10.00                         | 08.M<br>(C)rr)<br>(C)rr)<br>(C)rr)<br>(C)844<br>(C)844                                         | Hours V<br>0                   | Productor<br>(kum)<br>0                      | Fuel ¥<br>(L) ¥<br>0                 | 08M Cost ¥<br>(€/yr)<br>0                                | 0                     | Capital Cost V<br>(7)<br>323,329<br>316,541 | V<br>Production<br>(kWh/yr)<br>12,064<br>11,830 | C Quantity T                  | Y C1                   |
|         | And in the fat in |                  | Gen10<br>(kW)<br>10.0<br>10.0<br>10.0         | (t)<br>(t)04M<br>(t)39M<br>(t)77B                                   | 1939<br>1939<br>19514<br>133,252             | Con<br>Operating cost • V<br>(T/yr)<br>T17,872<br>T21,650<br>T134M    | Left Double Click of<br>t<br>britial capital<br>(7)<br>4809, 329<br>41.11M<br>431.7M          | Optimization<br>a particular system to<br>(t/yr)<br>40.00<br>40.00<br>1191,367             | CAM V<br>(C/yr)<br>65,848<br>71,34M                                                            | Hours ¥<br>0<br>0<br>2,669     | Productor ve<br>(kWP)<br>0<br>6,672          | fuel ¥<br>(L)<br>0<br>3,189          | 08M Cost ¥<br>(₹/yr)<br>0<br>133,450,000                 | 0 191,367             | Capital Cost V<br>(7)<br>323,329<br>316,541 | V<br>Production<br>(kWh/yr)<br>12,064<br>11,830 | 7 Quantity 1<br>1<br>90       | 33                     |
|         |                   |                  | Gen10<br>(kW)<br>10.0<br>10.0<br>10.0<br>10.0 | (4)<br>(1.04M<br>(1.39M<br>(1.778)<br>(1.778)<br>(1.778)<br>(1.778) | 10<br>129.59<br>126.14<br>133,252<br>146,725 | Con<br>Operating cost<br>((7)(1)<br>17,872<br>121,650<br>134M<br>136M | Left Double Click or<br>I<br>Diffall capital V<br>(T)<br>TBD9, 329<br>TL11M<br>TSL7M<br>TSL7M | Optimization<br>a particular system to<br>(1/yr)<br>10.00<br>10.00<br>1191,367<br>1271,008 | Results.<br>are in dea<br>(C)vi) V<br>65,844<br>63,488<br>61,34M<br>61,80M<br>61,80M<br>61,90M | Hours ¥<br>0<br>2,669<br>1,781 | Productor y<br>(conv)<br>0<br>6,672<br>9,452 | fuel ¥<br>(L)<br>0<br>3,189<br>4,518 | 084M Cost ¥<br>(5/yr)<br>0<br>133,450,000<br>189,050,000 | 0 191,367 271,008     | Capital Cost V<br>(7)<br>323,329<br>316,541 | V<br>Production<br>(kWh/yr)<br>12,064<br>11,830 | 7 Quantity 7<br>1<br>90<br>90 | 7 Ca<br>33<br>29<br>29 |

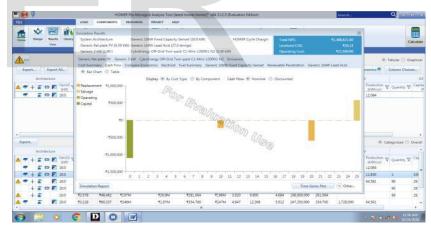

Fig 11 Optimization & Sensitivity Result

Fig. 11 shows Optimization and sensitivity result carried out in HOMER PRO for Hybrid Energy Project



#### Fig 12 Cost Summery

Fig 12 shows Cost summery report analyzed by HOMER. The software analyzed 11382 solutions, out of which 11152 were feasible, 230 unfeasible due to limited battery life over period of 25 years.



#### Fig 13 Cash Flow

Fig 13 shows cash flow graph of project of Hybrid Energy involving all the costs of components in initial stage and feasible gain over long period of 25 years.

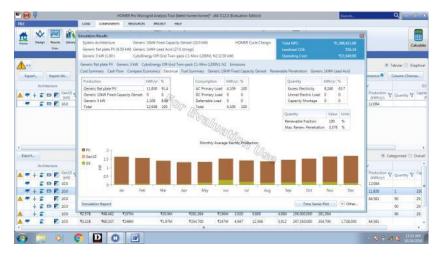



Fig 14 Monthly Average Electric Productions

Fig 14 show monthly average electric production of hybrid energy system at Devabag, Karwar

#### Table 3 capacity based matrices

| Capacity based<br>matrices                                         | Value | Unit |
|--------------------------------------------------------------------|-------|------|
| Nominal renewable<br>capacity divided by<br>total nominal capacity | 40.2  | %    |
| Usable renewable<br>capacity divided by<br>total capacity          | 35.0  | %    |

#### Table 4. Energy based matrices

| Energy based Matrices      | Value | Unit |
|----------------------------|-------|------|
| Total renewable production | 294   | %    |
| divided by load            |       |      |
| Total renewable production | 100   | %    |
| divided by generation      |       |      |
| One minus total            | 100   | %    |
| nonrenewable production    |       |      |
| divided by load            |       |      |

#### Table 5 peak value of energy

| Peak Value               | Value | Unit |
|--------------------------|-------|------|
| Renewable output divided | 3,355 | %    |
| by load (HOMER           |       |      |
| standard)                |       |      |
| Renewable output divided | 100   | %    |
| by total generation      |       |      |
| One minus nonrenewable   | 100   | %    |
| output divided by total  |       |      |
| load                     |       |      |

#### **10. CONCLUSION & RESULT**

The main target is to get better yield of hybrid energy which cost least per kWh.

In Optimization result HOMER not considered fuel cost of Generator as alone wind and solar energy produces access energy after utilization in load. The hybrid energy system consisting Solar PV, Wind Turbine, Convertor and storage battery show excellent performance and for 24 hours uninterrupted power supply is given to fishermen community households in Devabag Village, Karwar

#### REFERENCES

- Nasifr Mahumud, Asif Hassan, Md. Shamiur Rahman, Modelling and cost analysis of Hybrid Energy for St. Martin Island Using HOMER IEE 978-1-4799-04006/13@2013 IEE
- [2] Norat Mal Swarnkar, Lata Gidwani, Economic & Financial Assessment of Integrated Solar And Wind Energy System in Rajasthan, India, 978-1-5090-4324-8/17@2017 IEE
- [3] Basangouda F Ronad, Suresh H. Jangamshetti, Optimal Cost Analysis of Wind-Solar Hybrid System Powerd AC & DC Irregation Pumps using HOMER, 978-1-4799-9982-8/15@2015 IEEE
- [4] Shantu Ghose, Adel El Shahat, Rami J Haddad, Wind-Solar Hybrid Power System Cost Analysis using HOMER for Stateboro, Georgia, 978-1-5386-1539-3/17@2017 IEEE
- [5] R. Sophia Porchelvi, K Satya, Cost Benefit Analysis of Installing Renewable Energy.IJSRP Vol 3, Issue 4 April 2015
- [6] S.M. Shaheed, M A. Elhadidy, Economic analysis of Hybrid photovoltaic – diesel – battery power system for residential loads in hot regions – A step to clean energy., 1364-0321 @ 2006 Elsevier Ltd
- [7] K R Ajao, O A Oladosu, G T Popoola, Cost Benefit Analysis of Hybrid Wind-Solar Power Generation by HOMER Power Optimization Software, JAST Vol 16, Nos. 1 & 2, 2011, pp 52-57
- [8] Jagriti Kumari, P Subatra, J Edwin Moses, Shruti D, Economic Analysis of Hybrid Energy System for Rural Electrification using HOMER,IEEE ISBN No.978-1-5090-4527-3/2017

